Algebraic and Analytic Aspects of Automorphic Forms

ag.algebraic-geometry nt.number-theory rt.representation-theory
Start Date
End Date
International Centre for Theoretical Sciences 
Meeting Type
Contact Name


The theory of automorphic forms is one of the frontier areas in mathematics, which links diverse areas such as representation theory of real and p-adic groups, theory of L-functions, and modular forms.

The algebraic and analytic aspects of the theory of automorphic forms are at the basis of much of modern number theory. The algebraic theory of automorphic forms broadly comprises of the study of automorphic representations of adelic groups, their L-functions, and also the study of their local components. The theory of group representations for real, p-adic, and adelic groups, is an actively pursued area of research and plays a central role in modern number theory. In the analytic theory of automorphic forms, the study of L-functions is one of the most important topics, together with Fourier coefficients of modular forms.

The workshop will be from 25th of February to 1st of March, 2019, and the discussion meeting from 4th of March to 7th of March, 2019. The workshop will consist of the following 4 courses, each of 6 hours duration, with some extra time devoted to tutorials.

  • Prof. Anna von Pippich (TU Darmstadt, Germany): “Theory of Eisenstein series”. Pippich will review the theory of Eisenstein series, and their significance in the spectral theory of automorphic forms.
  • Prof. Ameya Pitale (University of Oklahoma, USA): “Siegel modular forms: Classical and adelic aspects”. Pitale will discuss Siegel modular forms, both from the classical viewpoint of functions on Siegel upper half spaces as well as the modern viewpoint of automorphic representations of the symplectic group.
  • Prof. Vincent Sécherre (Université de Versailles, France): “ℓ-Modular representations of p-adic groups”. Sécherre will discuss the theory of smooth representations of p-adic groups with coefficients in an algebraically closed field of characteristic ℓ, where ℓ is different from 0 and p.
  • Prof. Shunsuke Yamana (Kyoto University, Japan): “L-functions and theta correspondence for classical groups”. Yamana will discuss his paper Invent. Math. 196 (2014), no. 3, 651–732, beginning with an introduction to theta correspondence.

The discussion meeting will gather together several national and international speakers to get a sense of some of the current directions in this subject without making it overtly technical.


If you notice a problem with this entry, please contact the curators by email.